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In  isotropic ‘box’ turbulence without a mean flow, the Lagrangian frequency 
spectrum extends to frequencies of order (+)a ( E  is the rate of dissipation of 
kinetic energy per unit mass and v is the kinematic viscosity of the fluid). This 
leads to an estimate that makes the r.m.s. value of duldt of order (e3/v)4. The 
Eulerian frequency spectrum, however, extends to higher frequencies than its 
Lagrangian counterpart; this is caused by spectral broadening associated with 
large-scale advection of dissipative eddies. As a consequence, the r.m.s. value of 
au/at a t  a fixed observation point is (apart from a numerical factor) RR times as 
large as the r.m.s. value of duldt (RA is the turbulence Reynolds number based on 
the Taylor microscale). The results of a theoretical analysis based on these 
premises agree with data obtained by Comte-Bellot, Shlien and Corrsin. The 
analysis also suggests that the Eulerian frequency spectrum has a u-8 behaviour 
in the inertial subrange, and that it is not governed by Kolmogorov similarity. 

1. Introduction 
The shapes of the Eulerian and Lagrangian frequency spectra in isotropic ‘box ’ 

turbulence without mean flow have been subjects of some speculation over the 
years (Inoue 1951; Corrsin 1963; Tennekes & Lumley 1972). Both spectra are 
assumed to obey Kolmogorov scaling; this leads to forms which are proportional 
to ~ w - ~  in the inertial subrange (6 is the rate of dissipation of kinetic energy per 
unit mass and w is the angular velocity). 

Favre, Gaviglio & Dumas (1951) and Comte-Bellot & Corrsin (1971) measured 
the Eulerian time correlation function (in a frame of reference moving with the 
mean flow) of isotropic wind-tunnel turbulence. From their experimental results, 
Comte-Bellot & Corrsin calculated the Eulerian time microscale. The calculated 
value, however, was five times smaller than the one derived from the hypothetical 
similarity between the Eulerian and Lagrangian frequency spectra. This dis- 
crepancy suggests that the assumptions involved in the theoretical models should 
be re-examined. In  this paper, the results of an alternative theoretical approach 
are presented. 

The highest frequencies characterizing the dynamics of turbulence occur a t  the 
smallest length scales. The Kolmogorov microscale is ( v3/e)6, the Kolmogorov 
frequency of dissipative eddies is ( E / V ) ~  and the kinetic energy of the dissipative 
eddies is of order ( V E ) ~  per unit mass. It appears reasonable to postulate that the 
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position of the viscous cut-off in the Lagrangian frequency spectrum is deter- 
mined by the parameters v and E .  

An Eulerian observer of ‘box’ turbulence, however, will on occasion encounter 
appreciable energy at  frequencies much larger than (E/v)*. Random advection of 
the dissipative structure past the observation point causes spectral broadening, 
which is not unlike a Doppler effect. The highest frequencies that will be observed 
must be associated with the advection of dissipative eddies past the observation 
point by the most energetic eddies. The frequencies involved must be of order 
q/v ,  where +q2 is the mean kinetic energy per unit mass and 7 is the Kolmogorov 
microscale (113/e)k A simple calculation, based on the assumption that E - q3/Z 

(where 1 is an integral scale), shows that q/r is larger than (e/v)P by a factor 
proportional to R: = (qZ/v)g. 

In turbulence at  high Reynolds numbers, therefore, the dissipative eddies flow 
past an Eulerian observer in a time much shorter than t’he time scale which 
characterizes their own dynamics. This suggests that Taylor’s ‘ frozen-turbulence’ 
approximation should be valid for the analysis of the consequences of large-scale 
advection of the turbulent microstructure. Since Eulerian frequencies larger 
than (e/v)& can be generated only by advective spectral broadening, and since the 
r.m.s. value of &/at is determined by the position of the viscous cut-off in the 
Eulerian frequency spectrum, it appears reasonable to postulate that the 
Eulerian time microscale is determined by large-scale advection of dissipative 
eddies. This hypothesis serves as the starting point for further analysis. 

2. Analysis 
If Taylor’s hypothesis governs the advection of dissipative eddies past a fixed 

observation point, we can write 

If we assume that the microstructure is statistically independent of the energy- 
containing eddies, we obtain for the mean-square value of (1) in isotropic 
turbulence without mean flow 

In isotropic turbulence, we have (Taylor 1935; Batchelor 1953, p. 110) 

Therefore, ( 2 )  reduces to - (g)2 = 5 3  (g)2. 
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following relation holds (Taylor 1935; Tennekes & 

- 
E = 15v(%) au 2 

Also, the Taylor microscale h is defined by (Taylor 1935) 

Therefore, (5) may be written as 

or as 

1--s (T = g h e ; ,  

g)2 = 5 7 .  
( 2 ) 2  

(7) 

(9) 

Comte-Bellot & Corrsin (1971)  define the Eulerian time microscale rE through 
the relation+ 

Substitution of (8) and (9) into (10) yields 

In  the experiments by Comte-Bellot & Corrsin, the value of rE was determined 
from the Eulerian time correlation behind a two-inch grid, with the origin of the 
time delay chosen a t  the point x/M = 42 ( M  is the mesh size of the grid). Their 
experimental value for rE was 6-2 ms. At the reference position, h was equal to 
0.484 em and (2)4 was 22.2 em s-l. Substituting these values into (1 l), we find 
that the predicted value of rE is 13.8 ms. 

If rE is estimated on basis of the hypothetical similarity between the Eulerian 
and Lagrangian frequency spectra (Corrsin 1963), a value of approximately 30 ms 
is obtained (Comte-Bellot & Corrsin 1971). The Lagrangian time microscale in 
the same flow was measured by Shlien & Corrsin (1974); its value is 76 ms. It 
appears that  calculations based on the advection hypothesis are more realistic 
than calculations based on the Eulerian-Lagrangian similarity hypothesis. 

The measured value of rE is about half as big as our present estimate. This 
discrepancy deserves comment. Close inspection of the data collected by Comte- 
Bellot & Corrsin reveals that the shape of the Eulerian correlation curve near the 
origin is based on questionable extrapolations. The smallest time delay used was 
1.5 ms; there is no experimental evidence that the correlation curve is parabolic 
near the origin. Also, the correlation coefficients for small time delays were 
obtained by extrapolation from measurements taken with hot wires that were 
slightly displaced sideways. It seems likely that this procedure underestimates 
the correlation coefficients a t  small time delays. This would result in an under- 
estimate of rE. Since the correlation coefficients involved are so close to one, the 

t There is a misprint in the formula used by Comte-Bellot & Corrsin. 
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true experimental value of rE is probably substantially larger than the estimate 
given by Comte-Bellot & Corrsin. 

It should also be pointed out that the low Reynolds number grid turbulence 
used in the Comte-Bellot & Corrsin experiments is not an ideal test case for the 
advection hypothesis. At low Reynolds numbers, the advective spectral 
broadening is not very pronounced, and the validity of Taylor’s hypothesis is 
questionable. Still, the relatively good agreement between the prediction based 
on the advection hypothesis and the experimental result is sufficiently 
encouraging to attempt an alternative analysis of the Eulerian frequency 
v

3. The Eulerian frequency spectrum 
The frequency spectrum observed at  a fixed point in isotropic turbulence 

without a mean flow is strongly affected by advective spectral broadening. At 
a frequency corresponding to the viscous cut-off in the Lagrangian time spectrum 
for example, fluctuations are observed which are related to the passage of eddies 
in the inertial subrange. Some qualitative estimates will help to illustrate the 
issue. Large-scale advection of eddies of size r (where r is taken to be in the inertial 
subrange) creates frequencies of order q/r. In  order to find the value of r that 
contributes most to the energy a t  the Eulerian frequency corresponding to the 
cut-off frequency (E/v)* of the Lagrangian spectrum, we have to put 

q/r N (s /v)k (12) 

This yields r N q(v/e)*. (13) 

If r relates to an eddy in the inertial subrange, its kinetic energy may be estimated 
as (Tennekes & Lumley 1972, p. 260) 

&u2(r) N s W .  (14) 

$u2{r, (e/v)*} N E&@. (15) 

$u2{7, ( E / V ) * }  N (V€)B. (16) 

The contribution of these eddies to the kinetic energy at the Eulerian frequency 
( ~ / v ) t  is therefore 

In  the absence of advection by large scales, the kinetic energy at a frequency 
(+)* would be 

The ratio of (15) and (16) is 

Here, (w)* is the kinetic energy of the dissipative eddies. Clearly, the advective 
contribution outweighs the quasi-Lagrangian one, a t  least if the Reynolds 
number of the turbulence is large enough. 

We conclude that the high frequency end of the Eulerian time spectrum must 
be dominated by the Doppler shifts in frequency caused by random advection 
by the energy-containing eddies. This generalization of the advection hypothesis 
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permits us to obtain a probable form for the inertial subrange (obviously better 
referred to as the inertial-advective subrange) in the Eulerian frequency 
spectrum. 

If the dominant contribution to the kinetic energy at  a frequency w in the 
inertial-advective subrange is made by large-scale advection of eddies in the 
inertial subrange of the wavenumber spectrum, we have 

w - a/. (18) 

and +u2(w) N F W .  (19) 

Substitution of ( 18) into (19) yields 

&u2(w) - €5q%J-+. (20) 

@ E ( W )  = PEE'q'W-', (21) 

The Eulerian frequency spectrum is defined as the kinetic energy per unit 
frequency. We obtain 

where pE is an unknown constant, which presumably is of order one. 
The inertial-advective subrange in the Eulerian frequency spectrum thus does 

not obey Kolmogorov scaling, and is markedly different from the inertial sub- 
range in the Lagrangian frequency spectrum. The latter is (Inoue 1951; Corrsin 
1963; Tennekes & Lumley 1972, p, 277) 

QL(W) = pL€w-2. (22) 

Let us compare (21) and (22) a t  the lowest frequency for which they might give 
a reasonable representation. That frequency is w N q/l ( I  is an integral scale), and 
we find 

Since e N q3/1 ,  the values of QE and QL at the large-scale end are of comparable 
magnitude. In the absence of high Reynolds number data on these spectra, we 
cannot determine whether the Eulerian spectrum is likely to have a w2 shape 
at frequencies below those in the inertial-advective subrange, but it seems fair 
to speculate that such a small difference in spectral slope would be extremely 
hard to verify experimentally. One point appears to be clear, however: since the 
spectral ' smearing ' caused by random advection tends to remove discontinuities 
in the spectral slope, the inertial-advective spectrum proposed here may well be 
a valid approximation a t  frequencies near those characteristic of the large-scale 
structure. 

The spectra given by (21) and (22) can, after multiplication by u2, be integrated 
to obtain estimates for the mean-square values of au/at and duldt:  

and 
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Here, wE,D is the frequency of the viscous cut-off in the Eulerian spectrum and 

wL, is its Lagrangian counterpart. According to the advection hypothesis, 

oE,D = q/v  = qidv-2, 

while the highest Lagrangian frequency is 

wL, D = (+)+- (27) 

In  (26) and (27), unknown numerical coefficients have been ignored. Substitution 
of (26) into (24) yields 

(q = cgq2(; ) .  t 28) 

The value of C& can be estimated by comparing (28) with (8); this yields CE = Q, 
because q2 = 3 2 .  

substitution of (27) into (25) yields 

The value of C, can be estimated from the data given by Shlien & Corrsin (1974). 
They define the Lagrangian time microscale by? 

Substitution of (30) into (29) gives 
2 & ( 2 ) &  

= CL(8/Y)~' 
7 

For (z)& = 22-2 cms-l, .e = 0.4740m2s-3 and Y = 15 x 10-6m2s-1, Shlien & 
Corrsin found rL = 76 x 10-3s. Substitution of these values into (31) gives 
C, = 4 approximately. 

The ratio between the Eulerian time microscale and its Lagrangian counter- 
part thus is given by 

(32) 
%--- 4 (a+ 

- 
7L 3 

Here we have used C, = Q and CL = 4. 
The velocity ( E V ) )  occurring in (32) is the Kolmogorov velocity of the dissipa- 

tive eddies. Since the ratio (sv) i /q  is proportional to Ri* = (qZ/v)-i, this result 
confirms that the Eulerian time microscale must be appreciably smaller than its 
Lagrangian counterpart if the Reynolds number of the turbulence is large 
enough. The comparison also shows that the approximate equality of rE and rL 
predicted by Corrsin's (1 963) Eulerian-Lagrangian similarity hypothesis is bound 
to produce unrealistic values of rE. The values of rE and rL obtained in the 
experiments by Corrsin and his co-workers prove that the advect'ion hypothesis 
is justified, even at  relatively low Reynolds numbers. 

t There is a misprint in the formula used by Shlien & Corrsin. 



Eulerian and Lagrangian microscales in turbulence 567 

4. Discussion 
The consequences of the advection hypothesis are rather embarrassing in 

a personal sense. The section on time spectra in chapter 8 of Tennekes & Lumley 
(1972) treats the Eulerian spectrum on basis of the similarity hypothesis; if the 
analysis presented in this paper proves to be reliable, that section will have to be 
revised before a new edition goes to press. 

The advection-dominated Eulerian spectrum strongly suggests that the evolu- 
tion of turbulence in wavenumber space is best computed on a Lagrangian basis. 
Large-scale advection of the small-scale structure creates Eulerian Fourier com- 
ponents at frequencies that are higher than the angular velocities characterizing 
the internal evolution of the scales being advected, and calculations of the 
temporal evolution at the points of an Eulerian grid would tend to get over- 
whelmed by these spurious advection effects. From this point of view, models 
such as Kraichnan’s Lagrangian-history direct-interaction approximation ob- 
viously are to be preferred over their Eulerian counterparts. 
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